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General solution representations for velocity and pressure fields describing transient flows at
small Reynolds numbers (Stokes flows) and flows obeying Brinkman models are presented.
The geometry dependent vector representations emerge from the incompressibility condition
and are expressed in terms of just two scalar functions similar to the Papkovich-Neuber and
Boussinesq-Galerkin solution type. We provide new formulae connecting our differential re-
presentations and other solutions describing unsteady Stokes flow including Lamb’s (1932)
general infinite series solution. The unified approach presented here further demonstrates
an important link between oscillatory flows and flow through porous media using Brinkman
models. It is shown that the solutions of boundary value problems in the latter can be obta-
ined in a straightforward fashion, from the results of the former. This simple but surprising
analogy is further explained using the properties (mathematical as well as physical) that are
shared by the two different models. The construction of certain physical quantities is also
illustrated for spherical and spheroidal inclusions. It is believed that the general solutions
presented here will be useful in the computation of multi-particle interactions in transient
and Brinkman flows and also in linear elasticity.
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1. Introduction

The linearized viscous flow at low-Reynolds numbers is described by a pair of partial differential
equations connecting the velocity with the pressure field. The so called transient Stokes equations
were solved many years ago for oscillatory motions of a sphere along a diameter by Stokes (1851).
Subsequently, Lamb (1945) treated the problems of periodic motion in three-dimensions having
special relations to spherical surfaces in a more general manner. In particular, Lamb (1945)
presented a general solution of the oscillatory Stokes equations – in terms of three linearly
independent scalar functions – suitable for spherical boundaries in the form of an infinite series
by extending his idea for the steady case. In principle, all the problems of periodic motions
involving a spherical boundary can be solved using Lamb’s solution in terms of solid spherical
harmonics. On the other hand, spherical geometry provides the most widely used framework
for representing small particles and obstacles embedded within a viscous, incompressible fluid
characterizing transient creeping flow. Other notable works on this topic include those due to
Basset (1888), Mazur and Bedeaux (1974), Felderhof (1978), Lawrence and Weinbaum (1986),
Yang and Leal (1991) amongst many others. A brief historical review by Pozrikidis (1994)
contains further references on this subject.
There are many efficient methods in use to solve problems in low-Reynolds number flow

theory such as numerical computation, stream function technique, analytical function methods
and a differential representation technique. An important feature of the differential representa-
tion approach is that it leads to closed form analytic solutions in a fairly simple manner. The
famous representations due to Boussinesq (1885), Papkovich-Neuber (Neuber, 1934) and Naghdi
and Hsu (1961) have been used extensively to solve various steady and nonsteady problems in
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elasticity and fluid dynamics. In the interest of producing differential representations similar to
Papkovich-Neuber and Boussinesq-Galerkin, a general solution in terms of two scalar functions
A and B was proposed earlier in the case of steady-state creeping flow (Palaniappan et al.,
1992). For steady flows at small Reynolds numbers, the representation due to Palaniappan et
al. (1992) yields a complete general solution (Padmavathi et al., 1998). Such a representation
emerges as a result of the incompressibility condition and therefore can serve as a complete ge-
neral solution for unsteady creeping flow problems as well. Indeed the common incompressibility
feature for steady and unsteady flows suggests that the representation given in Palaniappan et
al. (1992), Palaniappan (2009) can yield a complete set of basis functions for transient flow pro-
blems as well. In the first part of this paper, we discuss the connection between the differential
representation given in Palaniappan et al. (1992) and other solutions in the context of transient
creeping flow. Specifically, we provide new formulae connecting the differential representation
and other solutions describing unsteady viscous flow. In particular, we show that the Lamb’s
general solution follows from the differential representation by a suitable choice of the scalar
functions. The connections to other representations are briefly discussed. Another differential
representation suitable for bounded flows (Palaniappan, 2000, 2009) constrained by plane wall
is also given. This general representation is shown to generate solution forms that are suitable
for studying oscillatory motions of disks at low Reynolds numbers.
In the second part, we demonstrate the link between the oscillatory creeping flow and flow

through porous media. The equations postulated by Brinkman (1947) in modeling of porous
media have been found widely applicable for high porosity systems. The merits of these equ-
ations over Darcy’s equations (modeling systems with low porosity) may be found in the work
of Oomes et al. (1970), Neale et al. (1973), Masliah et al. (1987), and Higdon and Kojima
(1981). Moreover, the validity of Brinkman’s equations has been justified theoretically by Tam
(1969), Saffman (1971), Lundgren (1972), Howells (1974). Furthermore, the problems involving
multiparticle interactions in a porous medium (Kim and Russel, 1985) and porous spherical
shells (Qin and Kaloni, 1993; Bhatt and Sacheti, 1994; Padmavathi and Amaranath, 1996) also
use Brinkman’s equations effectively. Some perspectives on convection problems indicating the
merits and limitations of equations of porous media may be found in Nield and Bejan (1992).
Although the Brinkman model is physically quite different from transient flow model, it has
some interesting mathematical similarities as shown here.

2. Solutions of transient creeping flow

The linearized Navier Stokes equations describing the motion of a viscous, incompressible fluid
are

ρ
∂u

∂t
= µ∇2u−∇p ∇ · u = 0 (2.1)

where u, p are the velocity and pressure fields for the fluid and µ, ρ are the fluid viscosity and
fluid density, respectively. For oscillatory motions, u and p vary as eαt (α is assumed to be
imaginary) that is, u = u′eαt, p = p′eαt and therefore equation (2.1)1 may be written as

µ(∇2 + h2)u′ = ∇p′ (2.2)

where h2 = −α/ν, ν is the kinematic viscosity. Using (2.1)2 in (2.2) we obtain

∇
2p′ = 0 (2.3)

and now (2.2) reduces to

(∇2 + h2)∇2u′ = 0 (2.4)
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Thus, the pressure in transient flow is harmonic as in the steady case but the Laplacian of the
velocity vector u′ satisfies the Helmholtz equation. It may be worthwhile to point out that in
the steady-state creeping flow, the Laplacian of velocity vector is harmonic and, hence, it is
biharmonic there. It is evident from (2.2) (by operating curl on both sides) that the vorticity
vector satisfies the Helmholtz equation. Incorporating these features, Lamb (1945) presented a
general solution of (2.2) and (2.3) as

u′ =
∞
∑

n=−∞

[ 1

h2µ
∇pn + (n+ 1)ψn−1(hr)∇φn

− nψn+1(hr)h
2r2n+1∇

φn
r2n+1

+ ψn(hr)r×∇χn

p′ = pn

(2.5)

The solid harmonic functions φn, χn arise from the solution of the homogeneous equation and
pn is the particular solution of (2.2). The function ψn is related to the Bessel function of a
fractional order that is finite at the origin. In the situation where the quantities of interest are
finite at infinity, the function ψn is to be replaced by Ψn. Their relations to the Bessel functions
are as follows

ζnψn(ζ) =

√

π

2ζ
Jn+ 1

2

(ζ) and ζnΨn(ζ) = (−)
n

√

π

2ζ
J
−n− 1

2

(ζ)

It is worth mentioning here that equation (2.2) may be regarded as the Laplace transform of
(2.1)1 with the transform variable s = h

2. Then by taking the inverse Laplace transform of (2.5)1,
one could obtain a general solution of transient Stokes equations for arbitrary time-dependent
flow.

2.1. A general representation for velocity and pressure fields

In the theory of isotropic elasticity and hydrodynamics, it is common to assume the solutions
of the governing partial differential equations in terms of auxiliary scalar functions, often referred
to as differential representations. For instance, in linear elasticity, the displacement vector may
be represented in terms of scalar functions as in Boussinesq (1885), Neuber (1934), Naghdi and
Hsu (1961) known as Boussinesq, Papkovich-Neuber and Naghdi-Hsu differential representations,
respectively. This approach is also followed and applied to many problems in hydrodynamics
including inviscid (Milne-Thomson, 1968) and viscous (Stokes, 1851; Palaniappan et al., 1992;
Dassios and Vafeas, 2004) flows. The crucial point in this technique is that the governing vector
differential equations in each physical model reduce to solving scalar differential equations for the
auxiliary functions. In many circumstances, the boundary conditions also turn out to be simpler
to apply with the scalar functions technique. The differential representation approach is also
applicable for time-dependent viscous flow models. Since the velocity vector (u and hence u′)
in transient flow is divergence-free, a suitable representation for this quantity is

u′ = curl curl (rA) + curl (rB) (2.6)

where r = xi+yj+zk and A, B are the scalar functions. The representation (2.6) was originally
proposed for steady-state incompressible flows (Palaniappan et al., 1992) and has been shown
to yield a complete general solution for creeping flows (Padmavathi et al., 1998). This type of
differential representation has also been employed in Feng et al. (1998) to investigate the general
motion of a circular disk in a Brinkman medium (a problem that is mathematically equivalent
to oscillatory Stokes flow discussed in Section 3 and 4 below).
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Substitution of (2.6) into (2.2) yields the pressure

p′ = µ
∂

∂r
[r(∇2 + h2)A] (2.7)

if

∇
2(∇2 + h2)A = 0 (∇2 + h2)B = 0 (2.8)

Thus, vector equation (2.1)1 for u reduces to solving scalar equations (2.8) for the functions
A and B. The scalar function A can be decomposed into A = A1 + A2 where ∇

2A1 = 0 and
(∇2+ h2)A2 = 0. It is interesting to note that the function A1 belongs to the kernel of ∇

2 (the
Laplace operator) and the functions A2 and B belong to the kernel of ∇

2 + h2 (the Helmholtz
operator). We now provide connection formulae by which we can transform any solution of
oscillatory flow from Lamb’s solution to differential representation form (2.6) and vice-versa.
Following the steady case approach, we take

A =
∞
∑

−∞

[ 1

h2µ

pn
n+ 1

+ (2n + 1)ψn(hr)φn
]

B =
∞
∑

−∞

ψn(hr)χn (2.9)

Substitution of (2.9) into (2.6) and (2.7) yields Lamb’s solution (2.5) after the use of some sim-
ple vector identities. Therefore, expressions (2.9) provide the formulae connecting differential
representation (2.6) and Lamb’s general solution for transient flows. Connections to other so-
lution representations, including the cartesian tensor solution due to Felderhof (1978), may be
established in a similar manner.

For flows with axial symmetry, the solution can be found using a single scalar function
commonly known as the Stokes stream function. In (2.6), if we take (after expanding the curl
operator)

∂A

∂θ
=
ψ(r, θ)

r sin θ
B = 0 (2.10)

((r, θ) refer to spherical polar coordinates) we then obtain the axisymmetric representation of
the solution for oscillatory flow. In this case, the Stokes stream function ψ(r, θ) satisfies the
fourth-order scalar equation

D2(D2 + h2)ψ = 0 D2 =
∂2

∂r2
+
1− η2

r2
∂2

∂η2
η = cos θ

The stream function ψ(r, θ) belongs to the kernel of D2(D2 + h2) and can be decomposed into
two functions of which one belongs to the kernel of D2 and the other to the kernel of (D2+h2).
Note that u′ and p′ are treated as time-independent quantities and so are the functions A
and B. But it should be remembered that they are in fact related to the original velocity and
presseure fields u and p through u = u′eαt and p = p′eαt. For this reason, we retain the
name oscillatory flow in the following examples, although, the time-dependence is not explicitly
mentioned.

2.1.1. Examples

(i) Uniform oscillatory flow. For a uniform oscillatory flow along the x-axis, the scalar functions
A and B in (2.6) are

A(r, θ, φ) =
U

2
r sin θ cosφ B = 0 U > 0 (2.11)
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The corresponding functions in Lamb’s general solution (2.5) are obtained using connection
formulae (2.9) as

p1 = Ur sin θ cosφ pn = 0 for n  2

φn = χn = 0 for all n
(2.12)

For the oscillatory flow symmetrical about z-axis (axis of symmetry), (2.10) yields the stream
function

ψ(r, θ) =
U

2
r2 sin2 θ, (2.13)

which was used by Stokes (1851) to study the oscillation of a sphere along its diameter.

(ii) Oscillatory rotlet along z-axis. For the flow resulting from a rotlet located at the origin and
whose axis along z-direction, one has

A = 0 B =
cos θ

r2
e−R(R+ 1) (2.14)

where R = hr. Comparison of (2.14) with (2.9) yields

χ1 =
cos θ

r2
ψ1 = e

−R(R+ 1) pn = φn = 0 (2.15)

which are the functions in Lamb’s solution representing the rotlet flow. The function ψ1 in (2.15)
can also be expressed in terms of modified Bessel’s functions.
In general, the transient flow fields are completely determined through the scalar functions A

and B given in differential representation (2.6). This general representation yields a set of basis
functions suitable for problems involving spherical boundaries. It may be possible to analyze the
utility of (2.6) for other body shapes including spheroids and ellipsoids.

2.2. A general solution representation for a plane wall

For flows in a semi-infinite domain, which is constricted by a plane wall, a more appropriate
complete general differential representation is (Palaniappan, 2000)

u = curl curl (êzA) + curl (êzB)

p = p0 + µ
∂

∂z
[(∇2 + h2)A]

(2.16)

where ∇2(∇2 + h2)A = 0, (∇2 + h2)B = 0, and êz is the unit vector along z-direction. The
image solutions for oscillating point singularities located in front of a plane wall (Pozrikidis,
1991) can be constructed using representation (2.16).
Differential representation (2.16) is also suitable for solving boundary value problems con-

cerning the oscillatory motions of circular disks in a viscous fluid. To see this, we first write the
velocity components and pressure in the cylindrical coordinates (ρ, θ, z) as

uρ =
∂2A

∂ρ∂z
+
1

ρ

∂B

∂θ
uθ =

1

ρ

∂2A

∂θ∂z
−
∂B

∂ρ

uz = −
(∂2A

∂ρ2
+
1

ρ

∂A

∂ρ
+
1

ρ2
∂2A

∂θ2

)

(2.17)

with

p = p0 + µ
∂

∂z
(∇2 + h2)A



410 D. Palaniappan

By taking

A(ρ, θ, z) =
ψ(ρ, z)

ρ
cos θ B(ρ, θ, z) =

χ(ρ, z)

ρ
sin θ

we obtain

uρ =
[ ∂

∂ρ

(1

ρ

∂ψ

∂z

)

+
χ

ρ2

]

cos θ uθ = −
[ 1

ρ2
∂ψ

∂z
+

∂

∂ρ

(χ

ρ

)]

sin θ

uz = −
∂

∂ρ

(1

ρ

∂ψ

∂ρ

)

cos θ

(2.18)

and

p = p0 + µ
cos θ

ρ

∂

∂z
(D2 + h2)ψ

These are precisely the functional forms assumed by Zhang and Stone (1998) to solve edgewise
translation of a disk. Likewise, the other particular functional forms that are zero and first
order harmonics in θ used in Zhang and Stone (1998) can be deduced from (2.16). Clearly, the
flow problems involving higher harmonics in θ do not belong to the class of solutions discussed
in Zhang and Stone (1998) and require a more generic approach. Needless to say that such
problems can be treated by the use of the general differential representation given in (2.16).
Another general solution in cylindrical coordinates is given by Happel and Brenner (1983) in their
monograph. Their solution is well suited for steady Stokes flow problems involving infinitely long
circular cylinders. One can also find explicit relations connecting the differential representation
given in (2.16) and Happel and Brenner’s general solution.
It should be pointed out that differential representations (2.6) and (2.16)1 emerge from the

incompressibility condition and differ by the vectors r and ez. Note that for spherical bounda-
ries r represents a normal vector to the sphere and for planar surfaces ez is a vector normal
to the xy-plane. It is evident that the general solution representation is geometry dependent.
Indeed, the boundary conditions in terms of the scalar functions A and B become considerably
simpler. This makes our solution representations more effective and may be preferred over other
solution forms for solving boundary value problems in transient Stokes flows. Below, we discuss
the solutions given in (2.6) and (2.16)1 in the context of Brinkman’s equations which model the
flow through porous media.

3. Solutions of Brinkman model equations

Now the equations modeling the flow through a porous medium proposed by Brinkman are

µ∇2v −
µ1
k
v = ∇p ∇ · v = 0 (3.1)

where v, p and µ have the usual meaning, k is the permeability of the porous medium and
µ1 is the effective viscosity. Equation (3.1)1 may conveniently be written as

µ(∇2 − λ2)v = ∇p (3.2)

where λ2 = µ1/(kµ). Note that equations (2.2) and (3.2) have the same structure (except for
the sign of λ2 and h2) and hence reveal the fact that the two different models are mathemati-
cally equivalent. It is straightforward to see (by doing the same operations as before) that the
pressure is harmonic, and the Laplacian of velocity and vorticity satisfy Helmholtz’s equation
in the Brinkman medium as in the case of transient flow. Thus, the equations of porous media
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and oscillatory flows share some of the physical properties as well. The sign difference in (2.2)
and (3.2) merely indicates the choice of the Bessel functions that are having complex and real
arguments respectively (Watson, 1952). Hence, the functions Jn are to be replaced by In in
the porous media model in order to obtain the general solution of Brinkman’s equations. We
therefore make the following observations:

• the velocity field given in (2.6) in terms of the scalar functions A and B is a suitable
differential representation for Brinkman’s equations.

• Lamb’s general solution given in (2.5) provides an alternative representation of the solu-
tion for Brinkman’s equations in terms of the scalar functions φn, pn and χn (all time-
independent in this case) with h2 = −λ2.

The above observations add to the list of mathematical similarities between the transient Stokes
equations and Brinkman equations which have been noted earlier in the literature (Kim and
Russel, 1985; Feng et al., 1998; Pozrikidis, 1991). Similarities between the two models have also
been observed for the motion of non-spherical objects (Feng et al., 1998; Zhang and Stone, 1998).
Therefore, it appears that with an appropriate interpretation, it is possible to obtain solution for
one model from the other. Some specific cases illustrating the above observations are discussed
in the next Section.

It may be noted that for planar boundaries in the Brinkman medium, the solution representa-
tion given in (2.16) provides a complete general solution. Indeed, this differential representation
can be used to find wall images due to point singularities located in the vicinity of porous slabs.
The different solution forms assumed in Feng et al. (1998) for studying motion of disks in the
Brinkman medium can be deduced from (2.16) in the same way as explained in the previous
Section. It follows that the scalar representation of solutions of the transient Stokes equations
and Brinkman equations are exactly the same as in the case of the steady Stokes flow which
follows from the incompressibility condition. It is therefore unnecessary to discuss such repre-
sentations for these two models separately. Moreover, forms similar to (2.6) and (2.16)1 can also
be utilized in classical linear elasticity and elastodynamics as well.

4. Further illustration

We now turn our attention to justify the foregoing observations by considering some special
situations. We restrict ourselves to a class of boundary value problems where the velocity vector
vanishes at the surface of a body that is immersed in a flow (no-slip or stick boundary condition).
Although the solution of the Brinkman equations can be obtained directly from Lamb’s solution
(Eqs. (2.5)), little care should be taken in extracting the physical quantities. Since unsteady
flows exhibit acceleration, an additional term is always present for instance in the force or drag.
It could be easily isolated from the force and the remaining part excluding the time factor gives
the expression for the force acting on a particle submerged in a Brinkman medium. We illustrate
these facts in the examples considered below. For convenience, we denote the quantities for time-
dependent flows and porous media (Brinkman’s model) with suffixed t and B, respectively and
λ as a common parameter. But it should be understood that λ assumes its respective values in
two different models.

4.1. Force on a sphere

Consider the Stokes problem of an oscillating spherical pendulum in a viscous fluid. The
velocity and pressure fields for this problem are given elsewhere (Stokes, 1851; Lamb, 1945).
The force acting on the blob of radius a oscillating about x-axis is
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Ft =
[

−6πµUa
(

1 + λ+
λ2

3

)

+
4

3
πµUaλ2

]

eαt (4.1)

We note that the second term on the right hand side of (4.1) is purely due to inertia which
is absent in the Brinkman model. Dropping the second term together with the time-dependent
factor eαt in (4.1), one obtains

FB = −6πµUa
(

1 + λ+
λ2

3

)

(4.2)

The above expression yields the drag on a test sphere in a Brinkman medium and agrees with
the result given in Tam (1969). As said before, the suffixes denote the time-dependent flows (the
explicit time-dependence is now clearly seen in (4.1)) and the Brinkman medium, respectively.
We have used λ as a common parameter in both the cases and it takes different values in the
respective phases.

4.2. Force on a spheroid

Now we consider a slightly oblate spheroid immersed in an oscillating flow. The expression
for the force acting on the spheroid is (Lawrence and Weinbaum, 1986)

Ft =
{

−6πµUa
[(

1 + λ+
λ2

3

)

+
4

5
ǫ(1 + 2λ+ λ2)

+
2

175
ǫ2
(

1 + 58λ+ 53λ2 +
4λ2

3 + 3λ+ λ2

)]

+
4

3
πµUaλ2(1 + ǫ+ ǫ2)

}

eαt
(4.3)

where ǫ is the departure from the spherical shape. For an oblate spheroid ǫ > 0 and for a prolate
spheroid ǫ < 0. Dropping the last term and together with eαt as in the previous case, we obtain
the new result

FB = −6πµUa
[(

1+λ+
λ2

3

)

+
4

5
ǫ(1+2λ+λ2)+

2

175
ǫ2
(

1+58λ+53λ2+
4λ2

3 + 3λ+ λ2

)]

(4.4)

The above expression yields the hydrodynamic force acting on a spheroid submerged in a Brink-
man medium. When the permeability is large i.e., when λ is small, we recover the Stokes
resistance for a slightly oblate spheroid suspended in a steady flow (Happel and Brenner, 1983).
For small permeability, equation (4.4) is dominated by λ2 term. In this case, the O(λ) correction
to (4.4) is important because it describes the growth of the boundary layer at the body surface.
It may also be noted that when ǫ = 0, (4.4) reduces to that of a perfect sphere.
Finally, the sign difference in (2.4) and (3.2) (in front of h2 and λ2) should be interpreted with

care in the two models. This difference may have significant impact on the physical quantities of
interest. For instance, in the slow oscillatory flow of a viscous fluid past a sphere (Smith, 1995),
the vorticity on the sphere (r = 1) is given by

ωt =
[3

2
(σ + 1)

]

eαt (4.5)

where σ2 = ih. For the slow flow through porous media, the vorticity on the sphere (Pop and
Ingham, 1996) is

ωB =
[3

2
(σ + 1)

]

(4.6)

with σ = λ. The vorticity given in (4.5) vanishes for some values of σ (negative values of σ are
admissible in this case) implying that flow separation is possible. However, the vorticity given
in (4.6) never vanishes for σ > 0 (σ cannot take negative values here) and consequently there
is no flow separation for this flow in the Brinkman medium.
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5. Conclusion

General solutions for the transient Stokes flow and flow through porous media are discussed in
this paper. Differential representation for transient flow is shown to be equivalent to Lamb’s
general solution and new formulae connecting the two solutions are given. An alternative repre-
sentation for bounded flows constrained by a plane wall is also provided. The usefulness of this
new solution representation for flows involving disks is briefly outlined. It is observed that the
solution representations are geometry dependent. The analogy between the oscillatory flows and
the flow through porous media is exploited to derive the solutions of the Brinkman equations.
Some representative boundary value problems are considered to justify our observations concer-
ning the two models. Our discussion indicates that the solutions of Brinkman models can be
derived from the transient Stoke flow models and so the duplication may be avoided. Apart from
genuine mathematical interest, the results provided here may found useful in practice where the
general and generalized solutions (Shu and Chwang, 2001) are needed to understand the basic
engineering aspects in fluid and elastic environments. Time-dependent multiparticle interactions
and mobility of particles close to the Brinkman half-space (Damiano et al., 2004) including elec-
trophoretic motion of charged particles in porous media (Tsai et al., 2011) are a few prospective
topics for further research using our general solution representations.
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